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1 Motivation

A graph, a group, and a surface walk into a bar
These three structures are of course very different. With shallow thought, it’s difficult
to conjure up notable similarities or relations between all three. Between any two of
these structures, it’s possible to think of one in terms of the other: surfaces in terms
of their fundamental groups, graphs in terms of their automorphism groups, etc. But
mingling all three is a bit trickier.

Combining these relationships yields a
method of observing properties of one
structure through another structure, re-
alized as a third structure. Of par-
ticular interest is the idea of realiz-
ing groups as graphs, and observing
properties of that graph through sur-
face embeddings. In other words,
our goal is to take some Cayley
graph C(Γ) of some group Γ and
classify Γ based on the genus of
C(Γ).

We’ll set out to show three results: a the-
orem due to Levinson on the genus of
infinite groups; a result by Tucker that
shows any genus γ > 1 has only a finite
number of associated groups; and finally
a surprising result on the number of groups of genus 2. We’ll end with a program I
wrote that generates nonplanar Cayley graphs.

2 Basic Definitions

Graph Embeddings and Graph Genera
We’ll start by building up some technology for understanding the graph-to-surface
translation. Recall that we want to classify graphs based on the genus of the surface(s)
we can embed our graph into. Here, we’ll concern ourselves only with orientable sur-
faces.

Definition 1. The genus γ(G) of some graph G is the minimum genus of all surfaces
that G can be embedded into. A graph embedding G in Sk (surface of genus k) is a
minimal embedding if γ(G) = k.

Definition 2. A graph is called a cellular embedding if each face of the embedding is
homeomorphic to the open disc.
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For example, any planar graph embedded in the sphere is cellular. But consider the
graph K4 embedded in the torus as shown.

We can see that the outer face is homeomorphic to the cylinder, so the embedding is
not cellular. This is useful in narrowing our classification down, as we can develop a
sense of an upper bound of a genus.

Definition 3. The maximum genus γM(G) of a connected graph G is the maximum
genus among the genera of all surfaces in which G has a cellular embedding.

The Genus of a Group
Recall that a Cayley graph of a group Γ with generating set S is a directed colored graph
G whose vertices are the elements of Γ and which has an edge connecting two vertices
v1,v2 if and only if g1,g2 corresponding to v1,v2 implies that there is some s ∈ S such
that g1s = g2. Let CS(Γ) denote the undirected, uncolored underlying graph of the
Cayley graph of Γ with generating set S. We’ll use the term Cayley graph sometimes
to refer to this underlying graph, since we don’t care much about the directedness or
coloring. By using the tools we’ve developed concerning the genus of graphs on the
Cayley graph, we can develop an understanding of the “surface behavior” of groups.

Definition 4. The genus of a group γ(Γ) is the minimum genus of all Cayley graphs
of Γ, i.e.

γ(Γ) = min{γ(CS(Γ))}

taken across all generating sets S.

This definition comes from Arthur T. White, who, in the 70’s, coined the notion of
the genus of a group; yet, classification of groups by their genus can be dated as far
back as 1896, when Mashke gave the following result for planar groups:

Theorem 2.1. For a finite group Γ, γ(Γ) = 0 if and only if Γ = Γ1×Γ2, where Γ1 =Z1
or Z2 and Γ2 = Zn, Dn, S4, A4, or A5.

3 Infinite Groups and Levinson’s Result
Before going deeper into the classification of finite groups by their genus, it might first
be natural to wonder what happens when we take groups of extreme order – how can we
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classify infinite groups? Consider the basic word group generated by < a,b > and their
inverses. The Cayley graph is the classic cauliflower design, one that’s clearly planar.
We can also consider an infinitely generated group whose Cayley graph contains Kn for
any n > 1. By results similar to Kuratowski’s Theorem, we’d eventually need greater
and greater genera for this graph.

Definition 5. An infinite graph G has infinite genus if for every n > 0, there exists a
finite subgraph Gn of G such that γ(Gn)≥ n.

We might wonder whether we can create infinite toroidal Cayley graphs or infinite
Cayley graphs of any other genus. We’ll need a couple of lemmas to build up to this
answer.

Firstly, we’ll want to understand how the genus of a graph corresponds to the sum
of its components. We can show that the genus of a graph is the sum of the genera of
its components; in fact, we can show the stronger statement that the genus of a graph
is the sum of the genera of its blocks.

Definition 6. A block of a graph is a maximally connected subgraph containing no
cut-vertices.

The proof of this additivity is done in (Battle) by showing γ(G) ≤ γ(G1)+ γ(G2)
and then γ(G) ≥ γ(G1)+ γ(G2) for blocks G1, G2 such that G1 ∪G2 = G. The latter
takes a bit of intense point-set topology, so we’ll prove only the former with what I’ll
call the donut kissing method and defer the proof of the other inequality.

Lemma 3.1. Let G1, G2 be blocks of G such that G1 ∪G2 = G and G1 ∩G2 = v. Then,

γ(G) = γ(G1)+ γ(G2).

Proof. We’ll first show that γ(G) ≤ γ(G1)+ γ(G2). Let G1 and G2 be minimally em-
bedded into surfaces M1 and M2. We’ll say vi is v in Gi. Around vi, we can draw a
closed Jordan curve Ji in Mi such that the interior Ci is homeomorphic to the open disc
and (Ji ∪Ci)∩Gi = vi.
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Now, we can identify J1 with J2 such that v1 = v2, and get rid of Ci. What we’re left
with is a new surface of genus γ(M1)+ γ(M2) with G embedded into it. So, γ(G) ≤
γ(M1)+ γ(M2).

We now want to show that γ(G) ≥ γ(G1)+ γ(G2). For the proof of this, refer to
(Battle).

Because of the inequalities shown above, γ(G) = γ(G2)+ γ(G2).

If G is not connected, then we can consider the graph H constructed by taking all
of the components of G, adding a vertex, and connecting that vertex to each component
of G. Then we can apply basic induction to the lemma to get the following corollary.

Cor 3.2. If G is a graph and G1, G2, . . . , Gn are the components of G, then

γ(G) =
n

∑
i=1

(γ(Gi)).

Lemma 3.3. Let G :=CS(Γ) for some infinite group Γ with generating set S. Let H be
a finite subgraph of G. Then there exist two disjoint isomorphic copies of H in G.

Proof. Because H is a finite subgraph of G, H corresponds to a finite set of elements
of Γ, {g1,g2, . . . ,gn}. Let

T = {gig−1
j | 1 ≤ i, j ≤ n}.

Take some x ∈ Γ−T . Then, let

H ′ = {xgi | 1 ≤ i ≤ n}.

H ′ is a subgraph of G by the closure of Γ. We’ll show that H is isomorphic and disjoint
to H ′.
We can see that for s ∈ S, gis = g j if and only if xgis = xg j, so the two sets are iso-
morphic. Suppose they weren’t disjoint, so there exists some v ∈V (H)∩V (H ′). Then
there would be some i and j such that gi = xg j. That means that x = gig−1

j , which
contradicts that x ∈ Γ−T . So, H and H ′ are disjoint.

Using these two lemmas, we can now prove the surprising Levinson’s Result, clas-
sifying all groups of infinite order.

Theorem 3.4 (Levinson). If Γ is an infinite group, γ(Γ) = 0 or ∞.

Proof. We gave an example of a planar group above. Suppose γ(Γ) ̸= 0. Then there
must exist some Kuratowski graph K (either K5 or K3,3, or some subdivision thereof)
as a subgraph of G :=CS(Γ). By 3.3, there must exist a K′ in G that is a disjoint copy
of K. By 3.2, we can see that γ(G)≥ γ(K∪K′). Now we can apply 3.3 again to K∪K′

to get 4 copies of K, and see that γ(G) ≥ γ(4K) = 4. Continuing this, we get that for
any n, we can find 2n disjoint copies of K in G. Thus Γ(G) = ∞.
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4 Groups of Genus 1
After seeing all groups of genus 0, we might wonder how the list of groups of a given
genus acts as we increase the genus. We’ll look at some results by Proulx on genus 1
groups, but the proofs she lays out are far too intense or have way too many cases to
be of interest here. Firstly, we’ll state the following theorem that narrows down which
groups can be toroidal.

Theorem 4.1. If G is a toroidal group, then it has a presentation

⟨x1,x2, . . . ,xn : r1 = r2 = · · ·= rs = 1⟩

such that if a is the number of elements in the generators x1,x2, . . . ,xn with order 2, b
is the number of generators with order 3, and c is the number of generators with order
greater than 3, then

3 ≤ a+5b/3+2c ≤ 4.

Running through the cases of this inequality, we can see that a toroidal group must
be generated by 2, 3, or 4 generators. I’ve written out all possible toroidal groups here.
Taking the toroidal group of the form Zn ×Zm for gcd(n,m)≥ 3, for example, we can
see that there are infinitely many toroidal groups.

If we wanted to take any surface with genus greater than 1, and, if we wanted to
climb atop a high mountain and shout down “Hoorah! I know for certain that there are
infinitely many Cayley graphs that I can embed into this surface!” (and honestly, who
hasn’t wanted to do this?), then we’d probably be kind of sad. Because, in fact, there is
no genus greater than 1 for which we have infinite such graphs.

5 Groups of Genus ≥ 3
In 1980, Thomas Tucker published a paper on the number of groups of a given genus.
He stated a very important theorem, the proof of which is too long to include here.

Theorem 5.1. For any group Γ, if γ(Γ) > 1, then γ(Γ) ≥ |Γ|/168+ 1. In particular,
the number of groups of a given genus greater than 1 is finite.

This is quite surprising, as, unlike groups of genus 0 or 1, we’re limited in our selec-
tion of Cayley graphs. Let ω(γ) be the number of groups of genus γ . It is conjectured
that for all γ > 1, ω(γ) ̸= 0.

There have been quite a few calculations for exact values of group genera, and some
upper bounds have been installed. Some basic groups have surprisingly high genus.
The group Z3 ×Z3 ×Z3, for example, has a genus of 7. There are many strategies and
techniques for calculating group genera, but it’s surprisingly difficult. The example
above gained attention in 1977, but wasn’t solved until 1985.
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6 Group of Genus 2
It would be appropriate to reread the section header, imagining an angelic choir singing
in the background, because this is one of those rare and interesting tokenistic objects
that shine in their uniqueness. Proulx conjectured in 1978 that there were no groups
of genus 2. A few years later, Tucker published a complete classification of genus 2
groups. The classification can be stated as follows.

Theorem 6.1. There is one group of genus 2. It is presented as

⟨x,y,z : x2 = y2 = z2 = 1, (xy)2 = (yz)3 = (xz)8 = 1,y(xz)4y(xz)4 = 1⟩.

The proof of this is an exhaustive combinatorial checklist of different generator
types combined with some group theory trickery; see (Tucker).

We’ll call this group the Tucker group, or T for short. The group, which has 96
elements, is the automorphism group of the generalized Petersen graph G(8,3), i.e., T
is the set of symmetries1 of the following graph:

The following is the Cayley graph of T :

1I’ve uploaded animations of the generators of these symmetries here.
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It is drawn on an octagon so that identifying opposite sides (without reversal) yields a
surface of genus 2. The embedding is a symmetric embedding, with eight-fold rota-
tional symmetry, which is 3-regular and 2-colorable. Not only does it look pretty cool,
but it’s amazingly symmetric.

7 Generating Non-planar Groups
In this section, we’ll look at the result of code written by myself, Yizhong Hu, and
Jordan Walendom for CS1710 (Logic for Systems). Our goal was to model many as-
pects of group theory in Forge so that we could exhaustively check theorems for small-
ordered groups. By the vastness of group theory, we branched out in many directions,
one of which was the application of graph theory. The code is here.

In generators.frg, we define minimal generators of groups, graphs, and subse-
quently Cayley graphs. The way it’s set up, we’re able to find instances of, for example,
non-planar groups. A couple examples of results our code came to was:

• The smallest-ordered group of genus 1 is the quaternion group, which has order
8.

• Let the potential genus ρ(Γ) be the maximum genus of all Cayley graphs of Γ

with minimal generating sets. The smallest-ordered group with potential genus
ρ(Γ) = 1 is again the quaternion group.
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Forge-generated Visualization of Quaternion Group

The code is a lot of fun to play around with to generate Cayley graphs of small-ordered
groups (Forge can only handle groups of around 12 elements or less, sadly).

8 Conclusion
We’ve seen that by taking a group and finding its Cayley graph with minimal genus,
we’re able to classify the groups. For groups of infinite order, we can surprisingly
classify them as either genus 0 or genus infinity. For groups of order 0, we can classify
pretty easily. For groups of order 1, it’s much more difficult – there are 28 cases the
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group can take on. There are infinitely many groups of order 0 and 1, which makes
those two genera unique for finite groups. Incredibly, there is exactly one group of
genus 2. For genus greater than 2, we know the number of groups of a given genus is
bounded above, and it’s conjectured that it’s bounded below by 1.

There is still a lot more to know about these groups. We haven’t covered the strate-
gies for calculating these genera – one of great ubiquity is calculating the rotation
schemes of the graph – embeddings into non-orientable surfaces, the Euler character-
istic of a group, etc. There are plenty of unanswered questions and plenty of room for
greater calculations. In all, the topology of the graphs of groups spans greatly, and this
paper has only scratched the surface.
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Appendix A

Links
Here is a list of links I embed in the text, written out in case the hyperlinks are inacces-
sible:

• Animations of Symmetries of G(8,3): https://beanway.me/projects/mobiuskantor.html

• All Toroidal Groups: https://beanway.me/projects/toroidalgroups.html

• Code from Section 7: https://github.com/YizhongHu/final project/blob/master/generators.frg
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