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1 Cyclicity of Group of Units mod Odd Prime Powers

From last lecture:

Proposition. If p is a prime, and if d|(p — 1), then the polynomial x* — 1 € (Z/ pZ)[x]
has exactly d roots in ¥, = 7/ pZ.

New corollary:
Corollary. The group of units G := (Z/pZ)* is cyclic.

Proof. Ford|(p—1), write y(d) for the number of elements of G with order d.

The proposition above implies that

Y wic)=d (wxi=id).

cld

The Mobius Inversion give

0(d) =Y ().

cld
On the other hand, id = ¢ *id implies that ¢ = p xid. Thus y(d) = ¢(d) for all
d|(p—1); so in particular y(p—1) = ¢(p— 1) > 1 for any prime p. O

We come to our first piece in classifying cyclicity in groups of units modulo some
number, which has the longest proof of this semester:

Theorem 1. Let p € Z.. be an odd prime, and let e > 1. Then U(p®) is cyclic.
We’ll start with an overview of the proof:
1. Pick aprimitive root p. Call it g.
2. Show that either g or g + p is a primitive root mod p°.

3. Show that if / is any primitive root mod p?, then / is a primitive root mod p¢ for
alle > 2.


https://brilliant.org/wiki/primitive-roots/

Proof. Let g be a primitive root mod p, and let d be the order of g mod p®. Since
o (p*) = p(p—1), we have d|p(p — 1), by Lagrange’s Theorem.

By definition of d,
gd =1

ng I mod p.

mod p?

Thus (p — 1)|d, so altogether d = p— 1 or p(p — 1). If the latter, we’re done with Step
2, so assume the former. Let i = g+ p. We know that / is a primitve root mod p, so
the order of & mod p? is either p— 1 or p(p—1).

By our new hypothesis,

¢""'=1 mod p?, so module p*> we have
Wl =(g+p)Pt=g"14+(p—1)g’ % p+---+ p’~! by the binomial theorem
=1—pg"? mod p>.

But pfg, so pg?~! #0 mod p, and hence #*~! # 1 mod p?. Thus the order of &
mod p? is p(p — 1), so h generates U (p?).
So if g is a primitive root mod p, then either g or g+ p is a primitive root mod p?.

Let h be a primitive root mod p¢ for some fixed e > 2. Let d be the order of A
mod p°*!. Then d|¢(p°*') = p(p — 1) by Lagrange, and just as argued in Step 2,

o(p)=p (p—1)d.

Hence, d = p*(p—1) or p~!(p—1). If the former, then we are done, so assume the
latter.

Our goal now is to show that
pet (1) #1 mod p¢t!,
implying that d = p¢(p — 1) after all.
Since & has order ¢ (p¢) = p¢~!(p—1) in U(p°), we have
R L1 mod pe. (1)
However,
P 1) = e—1
h =1 modp 2)
by Euler’s Theorem.
Combining (1) and (2) yields

hpefz(,,q) _ 1+kp671



where p 1 k. Therefore

o—

=) = (14 kpe )P

=1+ pkp* '+ (g) Kp* 24, ...

hP

Subsequent terms are all divisible by p3e’3 = ( pe’1)3, and hence by p“’“;
3e—1)>e+1 Ve>2.
Thus,
RPN = 1 ke 4 %kzpze*' (p—1) mod p°*!.

2 2e—1
We have that p is odd, so “Z—=1 s divisible by p**!, since 2¢ — 1 > e+ 1,

Ve > 2.
Thus,

e—1

W) =14 kp®  mod p¢t.

Since p 1k, we get that

e—1

BP0 £ 1 mod p¢t!

This proves that d = p¢(p — 1), which is to say that / is a primitive root mod p¢*!. [

2 Non-cyclicity of Unit Group mod 2¢,¢ > 3
Theorem 2. U(2°) is cyclic if and only if e =1 or e = 2.

Proof. Clearly U(2) and U (4) are cyclic. So we show that U (2°) is not cyclic.
Notice that it suffices to show that U(8) is net cyclic.

U(8)2{153a5a7}7 and 12:32:52:72 mod 8.
O
Corollary. U(m) is cyclic if and only if m = 1,2,4, p°, or 2p° for some odd prime p.

Proof. Recall that a product G of finite cyclic groups G and G, is cyclic if and only if
(IG1],1G2]) =1.

On the other hand, ¢ (m) is even Vm > 3. Combined with our structure theorems above
on U (p®) for primes p, this proves the corollary. O
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