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1 Cyclicity of Group of Units mod Odd Prime Powers
From last lecture:

Proposition. If p is a prime, and if d|(p−1), then the polynomial xd −1 ∈ (Z/pZ)[x]
has exactly d roots in Fp = Z/pZ.

New corollary:

Corollary. The group of units G := (Z/pZ)∗ is cyclic.

Proof. For d|(p−1), write ψ(d) for the number of elements of G with order d.

The proposition above implies that

∑
c|d

ψ(c) = d (ψ ∗ i = id).

The Möbius Inversion give

φ(d) = ∑
c|d

µ(c)
d
c
.

On the other hand, id = φ ∗ id implies that φ = µ ∗ id. Thus ψ(d) = φ(d) for all
d|(p−1); so in particular ψ(p−1) = φ(p−1)≥ 1 for any prime p.

We come to our first piece in classifying cyclicity in groups of units modulo some
number, which has the longest proof of this semester:

Theorem 1. Let p ∈ Z+ be an odd prime, and let e ≥ 1. Then U(pe) is cyclic.

We’ll start with an overview of the proof:

1. Pick a primitive root p. Call it g.

2. Show that either g or g+ p is a primitive root mod p2.

3. Show that if h is any primitive root mod p2, then h is a primitive root mod pe for
all e ≥ 2.
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Proof. Let g be a primitive root mod p, and let d be the order of g mod p2. Since
φ(p2) = p(p−1), we have d|p(p−1), by Lagrange’s Theorem.

By definition of d,

gd ≡ 1 mod p2

gd ≡ 1 mod p.

Thus (p−1)|d, so altogether d = p−1 or p(p−1). If the latter, we’re done with Step
2, so assume the former. Let h = g+ p. We know that h is a primitve root mod p, so
the order of h mod p2 is either p−1 or p(p−1).

By our new hypothesis,

gp−1 ≡ 1 mod p2, so module p2 we have

hp−1 = (g+ p)p−1 = gp−1 +(p−1)gp−2 · p+ · · ·+ pp−1 by the binomial theorem

≡ 1− pgp−2 mod p2.

But p ∤ g, so pgp−1 ̸≡ 0 mod p, and hence hp−1 ̸≡ 1 mod p2. Thus the order of h
mod p2 is p(p−1), so h generates U(p2).
So if g is a primitive root mod p, then either g or g+ p is a primitive root mod p2.

Let h be a primitive root mod pe for some fixed e ≥ 2. Let d be the order of h
mod pe+1. Then d|φ(pe+1) = pe(p−1) by Lagrange, and just as argued in Step 2,

φ(pe) = pe−1(p−1)|d.

Hence, d = pe(p− 1) or pe−1(p− 1). If the former, then we are done, so assume the
latter.

Our goal now is to show that

hpe−1(p−1) ̸= 1 mod pe+1,

implying that d = pe(p−1) after all.

Since h has order φ(pe) = pe−1(p−1) in U(pe), we have

hpe−2(p−1) ̸= 1 mod pe. (1)

However,
hpe−2(p−1) ≡ 1 mod pe−1 (2)

by Euler’s Theorem.

Combining (1) and (2) yields

hpe−2(p−1) = 1+ kpe−1
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where p ∤ k. Therefore

hpe−1(p−1) = (1+ kpe−1)p

= 1+ pkpe−1 +

(
p
2

)
k2 p2e−2 + . . . .

Subsequent terms are all divisible by p3e−3 = (pe−1)3, and hence by pe+1;

3(e−1)≥ e+1 ∀e ≥ 2.

Thus,

hpe−1(p−1) ≡ 1+ kpe +
1
2

k2 p2e−1(p−1) mod pe+1.

We have that p is odd, so k2 p2e−1(p−1)
2 is divisible by pe+1, since 2e−1 ≥ e+1,

∀e ≥ 2.
Thus,

hpe−1(p−1) ≡ 1+ kp2 mod pe+1.

Since p ∤ k, we get that

hpe−1(p−1) ̸≡ 1 mod pe+1.

This proves that d = pe(p−1), which is to say that h is a primitive root mod pe+1.

2 Non-cyclicity of Unit Group mod 2e, e ≥ 3

Theorem 2. U(2e) is cyclic if and only if e = 1 or e = 2.

Proof. Clearly U(2) and U(4) are cyclic. So we show that U(2e) is not cyclic.
Notice that it suffices to show that U(8) is not cyclic.

U(8) = {1̄, 3̄, 5̄, 7̄}, and 1̄2 = 3̄2 = 5̄2 = 7̄2 mod 8.

Corollary. U(m) is cyclic if and only if m = 1,2,4, pe, or 2pe for some odd prime p.

Proof. Recall that a product G of finite cyclic groups G1 and G2 is cyclic if and only if
(|G1|, |G2|) = 1.

On the other hand, φ(m) is even ∀m ≥ 3. Combined with our structure theorems above
on U(pe) for primes p, this proves the corollary.
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