Math 1560 - Notes 5

Ian Benway

15 February 2022

1 Cyclicity of Group of Units mod Odd Prime Powers

From last lecture:

Proposition. If *p* is a prime, and if d|(p-1), then the polynomial $x^d - 1 \in (\mathbb{Z}/p\mathbb{Z})[x]$ has exactly *d* roots in $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

New corollary:

Corollary. The group of units $G := (\mathbb{Z}/p\mathbb{Z})^*$ is cyclic.

Proof. For d|(p-1), write $\psi(d)$ for the number of elements of G with order d.

The proposition above implies that

$$\sum_{c|d} \boldsymbol{\psi}(c) = d \qquad (\boldsymbol{\psi} * i = id).$$

The Möbius Inversion give

$$\phi(d) = \sum_{c|d} \mu(c) \frac{d}{c}.$$

On the other hand, $id = \phi * id$ implies that $\phi = \mu * id$. Thus $\psi(d) = \phi(d)$ for all d|(p-1); so in particular $\psi(p-1) = \phi(p-1) \ge 1$ for any prime *p*.

We come to our first piece in classifying cyclicity in groups of units modulo some number, which has the longest proof of this semester:

Theorem 1. Let $p \in \mathbb{Z}_+$ be an odd prime, and let $e \ge 1$. Then $U(p^e)$ is cyclic.

We'll start with an overview of the proof:

- 1. Pick a primitive root *p*. Call it *g*.
- 2. Show that either g or g + p is a primitive root mod p^2 .
- 3. Show that if *h* is any primitive root mod p^2 , then *h* is a primitive root mod p^e for all $e \ge 2$.

Proof. Let g be a primitive root mod p, and let d be the order of $g \mod p^2$. Since $\phi(p^2) = p(p-1)$, we have d|p(p-1), by Lagrange's Theorem.

By definition of d,

$$g^d \equiv 1 \mod p^2$$

 $g^d \equiv 1 \mod p.$

Thus (p-1)|d, so altogether d = p-1 or p(p-1). If the latter, we're done with Step 2, so assume the former. Let h = g + p. We know that *h* is a primitve root mod *p*, so the order of $h \mod p^2$ is either p-1 or p(p-1).

By our new hypothesis,

$$g^{p-1} \equiv 1 \mod p^2$$
, so module p^2 we have
 $h^{p-1} = (g+p)^{p-1} = g^{p-1} + (p-1)g^{p-2} \cdot p + \dots + p^{p-1}$ by the binomial theorem
 $\equiv 1 - pg^{p-2} \mod p^2$.

But $p \nmid g$, so $pg^{p-1} \not\equiv 0 \mod p$, and hence $h^{p-1} \not\equiv 1 \mod p^2$. Thus the order of $h \mod p^2$ is p(p-1), so h generates $U(p^2)$.

So if g is a primitive root mod p, then either g or g + p is a primitive root mod p^2 .

Let *h* be a primitive root mod p^e for some fixed $e \ge 2$. Let *d* be the order of *h* mod p^{e+1} . Then $d|\phi(p^{e+1}) = p^e(p-1)$ by Lagrange, and just as argued in Step 2,

$$\phi(p^e) = p^{e-1}(p-1)|d.$$

Hence, $d = p^{e}(p-1)$ or $p^{e-1}(p-1)$. If the former, then we are done, so assume the latter.

Our goal now is to show that

$$h^{p^{e-1}(p-1)} \neq 1 \mod p^{e+1},$$

implying that $d = p^e(p-1)$ after all.

Since *h* has order
$$\phi(p^e) = p^{e-1}(p-1)$$
 in $U(p^e)$, we have
 $h^{p^{e-2}(p-1)} \neq 1 \mod p^e$.

However,

$$h^{p^{e-2}(p-1)} \equiv 1 \mod p^{e-1}$$
 (2)

(1)

by Euler's Theorem.

Combining (1) and (2) yields

$$h^{p^{e-2}(p-1)} = 1 + kp^{e-1}$$

where $p \nmid k$. Therefore

$$h^{p^{e^{-1}(p-1)}} = (1+kp^{e^{-1}})^p$$
$$= 1+pkp^{e^{-1}} + \binom{p}{2}k^2p^{2e^{-2}} + \dots$$

Subsequent terms are all divisible by $p^{3e-3} = (p^{e-1})^3$, and hence by p^{e+1} ;

$$3(e-1) \ge e+1 \quad \forall e \ge 2.$$

Thus,

$$h^{p^{e-1}(p-1)} \equiv 1 + kp^e + \frac{1}{2}k^2p^{2e-1}(p-1) \mod p^{e+1}.$$

We have that p is odd, so $\frac{k^2p^{2e-1}(p-1)}{2}$ is divisible by p^{e+1} , since $2e-1 \ge e+1$, $\forall e \ge 2$. Thus,

$$h^{p^{e-1}(p-1)} \equiv 1 + kp^2 \mod p^{e+1}$$

Since $p \nmid k$, we get that

$$h^{p^{e-1}(p-1)} \not\equiv 1 \mod p^{e+1}.$$

This proves that $d = p^e(p-1)$, which is to say that *h* is a primitive root mod p^{e+1} . \Box

2 Non-cyclicity of Unit Group mod 2^e , $e \ge 3$

Theorem 2. $U(2^e)$ is cyclic if and only if e = 1 or e = 2.

Proof. Clearly U(2) and U(4) are cyclic. So we show that $U(2^e)$ is *not* cyclic. Notice that it suffices to show that U(8) is **not** cyclic.

$$U(8) = \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\}, \text{ and } \bar{1}^2 = \bar{3}^2 = \bar{5}^2 = \bar{7}^2 \mod 8.$$

Corollary. U(m) is cyclic if and only if $m = 1, 2, 4, p^e$, or $2p^e$ for some odd prime p.

Proof. Recall that a product *G* of finite cyclic groups G_1 and G_2 is cyclic if and only if $(|G_1|, |G_2|) = 1$.

On the other hand, $\phi(m)$ is even $\forall m \geq 3$. Combined with our structure theorems above on $U(p^e)$ for primes p, this proves the corollary.